| | Bonding/ | Lewis | Dots | Lecture | |--|----------|-------|------|---------| |--|----------|-------|------|---------| Page 1 of 18 Date_____ # **Bonding** What is Coulomb's Law? Energy Profile: Covalent Bonds Electronegativity and Linus Pauling | 2.1 | | | | | | | | | | | | | | | | | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | Н | | | | | | | | | | | | | | | | | | 1.0 | 1.5 | | | | | | | | | | | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | | Li | Be | | | | | | | | | | | В | C | N | О | F | | 0.9 | 1.2 | | | | | | | | | | | 1.5 | 1.8 | 2.1 | 2.5 | 3.0 | | Na | Mg | | | | | | | | | | | Al | Si | P | S | Cl | | 0.8 | 1.0 | 1.3 | 1.5 | 1.6 | 1.6 | 1.5 | 1.8 | 1.8 | 1.8 | 1.9 | 1.6 | 1.6 | 1.8 | 2.0 | 2.4 | 2.8 | | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | | 0.8 | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 1.9 | 2.2 | 2.2 | 2.2 | 1.9 | 1.7 | 1.7 | 1.8 | 1.9 | 2.1 | 2.5 | | Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | | 0.7 | 0.9 | | 1.3 | 1.5 | 1.7 | 1.9 | 2.2 | 2.2 | 2.2 | 2.4 | 1.9 | 1.8 | 1.8 | 1.9 | 2.0 | 2.2 | | Cs | Ba | | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | | 0.7 | 0.9 | | | | | | | | | | | | | | | | | Fr | Ra | | | | | | | | | | | | | | | | **Unequal Sharing** Polar Covalent Bond Coordinate Covalent Bond How can you theoretically determine what type of bond is forming? F_2 H_2O HCl **KC1** CH_4 NO_2 ## **Lewis Structures** Valence electrons # Straight Forward Structures H_2 Cl_2 H_2O CH_4 I_2 NH_3 C_2H_6 CCl_4 PCl_3 Structures Containing Multiple Bonds O_2 C_2H_4 CO_2 N_2 C_2H_2 CO HCN C_2Cl_4 $COCl_2$ Complex Shapes/ Different Rules/ Ring Structures PCl_5 XeF_2 SF_4 I_3^- $BeH_2 \\$ $PBr_{5} \\$ SF_6 $BF_{3} \\$ C_6H_6 # **VSEPR** | Type | Picture | Shape | Example | Type | Picture | Shape | Example | |--------------------------------|---------|---------------------------|----------------------------------|--------------------------------|---------|---------------------------------------|------------------| | A_2 and AB_2 | •—• | Linear | H ₂ / CO ₂ | AB_4E | | Irregular
tetrahedral
(sea saw) | SF ₄ | | AB_3 | | Triangular | BCl ₃ | AB_3E_2 | 4 | T-shaped | ClF ₃ | | AB ₂ E | | Angular or
Bent | PbI ₂ | AB_2E_3 | | Linear | XeF ₂ | | AB ₄ | | Tetrahedral | CH ₄ | AB_6 | | Octahedral | SF ₆ | | AB ₃ E | | Triangular
pyramidal | NH ₃ | AB ₅ E | | Square pyramidal | ClF ₅ | | AB ₂ E ₂ | | Angular or
Bent | H ₂ O | AB ₄ E ₂ | * | Square
planar | XeF ₄ | | AB ₅ | | Triangular
bipyramidal | PCl ₅ | AB ₇ | | Pentagonal
bipyramidal | IF ₇ | ### Resonance What is resonance? $NO_3{}^-$ NO_2^- XeO_3 #### **Isomers** What is an isomer? Draw the three Lewis Structures for C₂H₂Cl₂ What are cis and trans structures? ### **Free Radicals** Draw the Lewis Structure for NO_2 Why does it dimerize? ### **Lewis Acids and Bases** ## **Formal Charge** How do you calculate formal charge? Draw three Lewis Structures for the sulfate ion. Calculate the formal charge on sulfur for each. ## **Polarity** How can we distinguish between a polar bond and a polar molecule Dipole moments H₂ HCl BCl_3 NH_3 How does symmetry effect a dipole moment? # Why Hybridize? Remember the shapes of the orbitals: sp³ Hybridization $sp^2 \ Hybridization$ sp Hybridization dsp³ Hybridization d^2sp^3 Hybridization How do we determine the Hybrid Orbital Number? | Number of things attached | Hybrid Orbital | Geometry around | Hybridization | |---------------------------|----------------|------------------|---------------| | to the central atom | Number | the central atom | How does CH₄ bond together? How does C₂H₄ bond together? How does C₂H₂ bond together? How does CO₂ bond together? How does PCl₅ bond together? How does N₂ bond together? ### **Molecular Orbitals** Why do we need another model? What are M.O.'s? What is the difference between a sigma and a pi bond? What were the most important concepts for putting electrons into orbitals? - 1) - 2) - 3) Bond Order Paramagnetism versus Diamagnetism For Homonuclear Species Diatomic Hydrogen and Helium $\sigma^*{}_{1s}$ 1s ____ ____ ____ 1s $\sigma_{\rm 1s}$ ____ $\sigma *_{1s}$ 1s _____ ____ 1s σ_{ls} ____ Higher Energy Orbital Filling Order σ * _{2p} ____ π*_x π*_y 2p_____ _____ ____ _____ 2p σ_{2p} ____ $\pi_x \; \pi_y$ $\sigma *_{2s}$ 2s ____ ____ 2s σ_{2s} ____ ___ 2p_____2p ____ 2s ___ 2s ____ ____ 2p_____2p ____ 2s ____ 2s ____ ____ ____ 2p______2p ____ 2s ___ 2s ____ ____ ____ 2p_____2p ____ ____ 2s ___ 2s ____ 2p_____2p ____ 2s ___ 2s ____ _____ 2p_____2p ____ 2s ____ 2s ___ | Molecule | \mathbf{B}_2 | C_2 | N_2 | O_2 | F_2 | Ne ₂ | |------------|----------------|-------|-------|----------------|-------|-----------------| | Bond Order | | | | | | | | Magnetism | | | | | | | ### **Delocalized Electron Model** Benzene as predicted by Hybrid Orbital Model Benzene as predicted by Molecular Orbital Model ### **Some Cool Molecules** - 1. For each of the following molecules or ions: - a. Identify the central atom (or atoms) - b. Draw the Lewis structure, and find from that the number of sigma bonds and the number of unshared pairs on the central atom. - c. Identify the hybridization on the central atom. - d. Determine the geometry of the atoms and lone pairs. - e. Does the molecule have a dipole moment or other unusual features? CH₄ CIF₃ H_2O PI_5 SF_6 I_3 BH_3 SF_4 NO_2^- BeCl₂ ### **Born-Haber Cycle** Lattice Energy Coulombs Law helps account for this ## 1) Given the following equations: | $Mg(g) \leftrightarrows Mg^{2+}(g) + 2e^{-}$ | $\Delta H^{\circ} = 2200.3 \text{ kJ/mole}$ | |---|---| | $Mg(s) \leftrightarrows Mg(g)$ | $\Delta H^{\circ} = 150.2 \text{ kJ/mole}$ | | $Cl_2(g) \leftrightarrows 2Cl(g)$ | $\Delta H^{\circ} = 243.3 \text{ kJ/mole}$ | | $Cl(g) + e^- \hookrightarrow Cl^-(g)$ | $\Delta H^{\circ} = -367.8 \text{ kJ/mole}$ | | $Mg^{2+}(g) + 2Cl^{-}(g) \hookrightarrow MgCl_2(s)$ | $\Delta H^{\circ} = -2500 \text{ kJ/mole}$ | Find the Heat of Formation for $MgCl_2(s)$: $Mg(s) + Cl_2(g) \hookrightarrow MgCl_2(s) \Delta H^\circ = ?$ ## 2) Given the following equations: | $K(s) + \frac{1}{2} F_2(g) \hookrightarrow KF(s)$ | $\Delta H^{\circ} = -562.6 \text{ kJ/mole}$ | |---|---| | $K(g) \leftrightarrows K^{+}(g) + e^{-}$ | $\Delta H^{\circ} = 424.93 \text{ kJ/mole}$ | | $F(g) + e^- \hookrightarrow F^-(g)$ | $\Delta H^{\circ} = -349.7 \text{ kJ/mole}$ | | $K(s) \leftrightarrows K(g)$ | $\Delta H^{\circ} = 90.0 \text{ kJ/mole}$ | | $F_2(g) \leftrightarrows 2F(g)$ | $\Delta H^{\circ} = 157.99 \text{ kJ/mole}$ | Find the Lattice Energy for KF: $K^+(g) + F^-(g) \hookrightarrow KF(s) \Delta H^\circ = ?$ # 3) Calculate the Lattice Energy for MgO from the following data: | Heat of formation for MgO(s) | -602 kJ/mole | |--|--------------| | Heat of sublimation for Mg(s) | 150 kJ/mole | | Ionization energy for Mg to Mg ²⁺ | 2188 kJ/mole | | Bond energy for O_2 | 498 kJ/mole | | Electron Affinity for O(g) | 737 kJ/mole | # 4) Use the following data to estimate the Heat of Formation for KCl: | Lattice Energy | −690 kJ/mole | |--------------------------------|--------------| | Ionization energy for K | 419 kJ/mole | | Electron Affinity of Cl | -349 kJ/mole | | Bond energy of Cl ₂ | 239 kJ/mole | | Enthalpy of sublimation for K | 64 kJ/mole |