	Bonding/	Lewis	Dots	Lecture
--	----------	-------	------	---------

Page 1 of 18

Date_____

Bonding

What is Coulomb's Law?

Energy Profile:

Covalent Bonds

Electronegativity and Linus Pauling

2.1																
Н																
1.0	1.5											2.0	2.5	3.0	3.5	4.0
Li	Be											В	C	N	О	F
0.9	1.2											1.5	1.8	2.1	2.5	3.0
Na	Mg											Al	Si	P	S	Cl
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I
0.7	0.9		1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At
0.7	0.9															
Fr	Ra															

Unequal Sharing

Polar Covalent Bond

Coordinate Covalent Bond

How can you theoretically determine what type of bond is forming?

 F_2

 H_2O

HCl

KC1

 CH_4

 NO_2

Lewis Structures

Valence electrons

Straight Forward Structures

 H_2

 Cl_2

 H_2O

 CH_4

 I_2

 NH_3

 C_2H_6

 CCl_4

 PCl_3

Structures Containing Multiple Bonds

 O_2

 C_2H_4

 CO_2

 N_2

 C_2H_2

CO

HCN

 C_2Cl_4

 $COCl_2$

Complex Shapes/ Different Rules/ Ring Structures

 PCl_5

 XeF_2

 SF_4

 I_3^-

 $BeH_2 \\$

 $PBr_{5} \\$

 SF_6

 $BF_{3} \\$

 C_6H_6

VSEPR

Type	Picture	Shape	Example	Type	Picture	Shape	Example
A_2 and AB_2	•—•	Linear	H ₂ / CO ₂	AB_4E		Irregular tetrahedral (sea saw)	SF ₄
AB_3		Triangular	BCl ₃	AB_3E_2	4	T-shaped	ClF ₃
AB ₂ E		Angular or Bent	PbI ₂	AB_2E_3		Linear	XeF ₂
AB ₄		Tetrahedral	CH ₄	AB_6		Octahedral	SF ₆
AB ₃ E		Triangular pyramidal	NH ₃	AB ₅ E		Square pyramidal	ClF ₅
AB ₂ E ₂		Angular or Bent	H ₂ O	AB ₄ E ₂	*	Square planar	XeF ₄
AB ₅		Triangular bipyramidal	PCl ₅	AB ₇		Pentagonal bipyramidal	IF ₇

Resonance

What is resonance?

 $NO_3{}^-$

 NO_2^-

 XeO_3

Isomers

What is an isomer?

Draw the three Lewis Structures for C₂H₂Cl₂

What are cis and trans structures?

Free Radicals

Draw the Lewis Structure for NO_2 Why does it dimerize?

Lewis Acids and Bases

Formal Charge

How do you calculate formal charge?

Draw three Lewis Structures for the sulfate ion. Calculate the formal charge on sulfur for each.

Polarity

How can we distinguish between a polar bond and a polar molecule

Dipole moments

H₂ HCl

 BCl_3 NH_3

How does symmetry effect a dipole moment?

Why Hybridize?

Remember the shapes of the orbitals:

sp³ Hybridization

 $sp^2 \ Hybridization$

sp Hybridization

dsp³ Hybridization

 d^2sp^3 Hybridization

How do we determine the Hybrid Orbital Number?

Number of things attached	Hybrid Orbital	Geometry around	Hybridization
to the central atom	Number	the central atom	

How does CH₄ bond together?

How does C₂H₄ bond together?

How does C₂H₂ bond together?

How does CO₂ bond together?

How does PCl₅ bond together?

How does N₂ bond together?

Molecular Orbitals

Why do we need another model?

What are M.O.'s?

What is the difference between a sigma and a pi bond?

What were the most important concepts for putting electrons into orbitals?

- 1)
- 2)
- 3)

Bond Order

Paramagnetism versus Diamagnetism

For Homonuclear Species

Diatomic Hydrogen and Helium

 $\sigma^*{}_{1s}$

1s ____

____ 1s

 $\sigma_{\rm 1s}$

 $\sigma *_{1s}$

1s _____

____ 1s

 σ_{ls}

Higher Energy Orbital Filling Order

σ * _{2p}

π*_x π*_y

2p_____

_____ 2p

 σ_{2p}

 $\pi_x \; \pi_y$

 $\sigma *_{2s}$

2s ____

____ 2s

 σ_{2s}

2p_____2p

2s ___ 2s

2p_____2p

2s ____ 2s

2p______2p

2s ___ 2s

2p_____2p

2s ___ 2s

2p_____2p

2s ___ 2s

2p_____2p

2s ____ 2s

Molecule	\mathbf{B}_2	C_2	N_2	O_2	F_2	Ne ₂
Bond Order						
Magnetism						

Delocalized Electron Model

Benzene as predicted by Hybrid Orbital Model

Benzene as predicted by Molecular Orbital Model

Some Cool Molecules

- 1. For each of the following molecules or ions:
 - a. Identify the central atom (or atoms)
 - b. Draw the Lewis structure, and find from that the number of sigma bonds and the number of unshared pairs on the central atom.
 - c. Identify the hybridization on the central atom.
 - d. Determine the geometry of the atoms and lone pairs.
 - e. Does the molecule have a dipole moment or other unusual features?

CH₄ CIF₃

 H_2O PI_5

 SF_6 I_3

 BH_3 SF_4

 NO_2^- BeCl₂

Born-Haber Cycle

Lattice Energy

Coulombs Law helps account for this

1) Given the following equations:

$Mg(g) \leftrightarrows Mg^{2+}(g) + 2e^{-}$	$\Delta H^{\circ} = 2200.3 \text{ kJ/mole}$
$Mg(s) \leftrightarrows Mg(g)$	$\Delta H^{\circ} = 150.2 \text{ kJ/mole}$
$Cl_2(g) \leftrightarrows 2Cl(g)$	$\Delta H^{\circ} = 243.3 \text{ kJ/mole}$
$Cl(g) + e^- \hookrightarrow Cl^-(g)$	$\Delta H^{\circ} = -367.8 \text{ kJ/mole}$
$Mg^{2+}(g) + 2Cl^{-}(g) \hookrightarrow MgCl_2(s)$	$\Delta H^{\circ} = -2500 \text{ kJ/mole}$

Find the Heat of Formation for $MgCl_2(s)$: $Mg(s) + Cl_2(g) \hookrightarrow MgCl_2(s) \Delta H^\circ = ?$

2) Given the following equations:

$K(s) + \frac{1}{2} F_2(g) \hookrightarrow KF(s)$	$\Delta H^{\circ} = -562.6 \text{ kJ/mole}$
$K(g) \leftrightarrows K^{+}(g) + e^{-}$	$\Delta H^{\circ} = 424.93 \text{ kJ/mole}$
$F(g) + e^- \hookrightarrow F^-(g)$	$\Delta H^{\circ} = -349.7 \text{ kJ/mole}$
$K(s) \leftrightarrows K(g)$	$\Delta H^{\circ} = 90.0 \text{ kJ/mole}$
$F_2(g) \leftrightarrows 2F(g)$	$\Delta H^{\circ} = 157.99 \text{ kJ/mole}$

Find the Lattice Energy for KF: $K^+(g) + F^-(g) \hookrightarrow KF(s) \Delta H^\circ = ?$

3) Calculate the Lattice Energy for MgO from the following data:

Heat of formation for MgO(s)	-602 kJ/mole
Heat of sublimation for Mg(s)	150 kJ/mole
Ionization energy for Mg to Mg ²⁺	2188 kJ/mole
Bond energy for O_2	498 kJ/mole
Electron Affinity for O(g)	737 kJ/mole

4) Use the following data to estimate the Heat of Formation for KCl:

Lattice Energy	−690 kJ/mole
Ionization energy for K	419 kJ/mole
Electron Affinity of Cl	-349 kJ/mole
Bond energy of Cl ₂	239 kJ/mole
Enthalpy of sublimation for K	64 kJ/mole